Sunday, June 14, 2009

Types of hydroponics are solution culture and medium culture


The two main types of hydroponics are solution culture and medium culture. Solution culture does not use a solid medium for the roots, just the nutrient solution. The three main types of solution culture are static solution culture, continuous flow solution culture and aeroponics. The medium culture method has a solid medium for the roots and is named for the type of medium, e.g. sand culture, gravel culture or rockwool culture. There are two main variations for each medium, subirrigation and top irrigation. For all techniques, most hydroponic reservoirs are now built of plastic but other materials have been used including concrete, glass, metal, vegetable solids and wood. The containers should exclude light to prevent algae growth in the nutrient solution.


Static solution culture
In static solution culture, plants are grown in containers of nutrient solution, such as glass Mason jars (typically in-home applications), plastic buckets, tubs or tanks. The solution is usually gently aerated but may be unaerated. If unaerated, the solution level is kept low enough that enough roots are above the solution so they get adequate oxygen. A hole is cut in the lid of the reservoir for each plant. There can be one to many plants per reservoir. Reservoir size can be increased as plant size increases. A homemade system can be constructed from plastic food containers or glass canning jars with aeration provided by an aquarium pump, aquarium airline tubing and aquarium valves. Clear containers are covered with aluminium foil, butcher paper, black plastic or other material to exclude light, thus helping to eliminate the formation of algae. The nutrient solution is either changed on a schedule, such as once per week, or when the concentration drops below a certain level as determined with an electrical conductivity meter. Whenever the solution is depleted below a certain level, either water or fresh nutrient solution is added. A Mariotte's bottle can be used to automatically maintain the solution level. In raft solution culture, plants are placed in a sheet of buoyant plastic that is floated on the surface of the nutrient solution. That way, the solution level never drops below the roots.


Continuous flow solution culture
In continuous flow solution culture the nutrient solution constantly flows past the roots. It is much easier to automate than the static solution culture because sampling and adjustments to the temperature and nutrient concentrations can be made in a large storage tank that serves potentially thousands of plants. A popular variation is the nutrient film technique or NFT whereby a very shallow stream of water containing all the dissolved nutrients required for plant growth is recirculated past the bare roots of plants in a watertight gully, also known as channels. Ideally, the depth of the recirculating stream should be very shallow, little more than a film of water, hence the name 'nutrient film'. This ensures that the thick root mat, which develops in the bottom of the channel, has an upper surface which, although moist, is in the air. Subsequently, there is an abundant supply of oxygen to the roots of the plants. A properly designed NFT system is based on using the right channel slope, the right flow rate and the right channel length. The main advantage of the NFT system over other forms of hydroponics is that the plant roots are exposed to adequate supplies of water, oxygen and nutrients. In all other forms of production there is a conflict between the supply of these requirements, since excessive or deficient amounts of one results in an imbalance of one or both of the others. NFT, because of its design, provides a system where all three requirements for healthy plant growth can be met at the same time, providing the simple concept of NFT is always remembered and practised. The result of these advantages is that higher yields of high quality produce are obtained over an extended period of cropping. A downside of NFT is that it has very little buffering against interruptions in the flow e.g. power outages, but overall, it is probably one of the more productive techniques.
The same design characteristics apply to all conventional NFT systems. While slopes along channels of 1:100 have been recommended, in practice it is difficult to build a base for channels that is sufficiently true to enable nutrient films to flow without ponding in locally depressed areas. Consequently, it is recommended that slopes of 1:30 to 1:40 are used. This allows for minor irregularities in the surface but, even with these slopes, ponding and waterlogging may occur. The slope may be provided by the floor, or benches or racks may hold the channels and provide the required slope. Both methods are used and depend on local requirements, often determined by the site and crop requirements.
As a general guide, flow rates for each gully should be 1 liter per minute. At planting, rates may be half this and the upper limit of 2L/min appears about the maximum. Flow rates beyond these extremes are often associated with nutritional problems. Depressed growth rates of many crops have been observed when channels exceed 12 metres in length. On rapidly growing crops, tests have indicated that, while oxygen levels remain adequate, nitrogen may be depleted over the length of the gully. Consequently, channel length should not exceed 10-15 metres. In situations where this is not possible, the reductions in growth can be eliminated by placing another nutrient feed half way along the gully and reducing flow rates to 1L/min through each outlet.



What Is Aeroponics?
Aeroponics is an application of hydroponics without a growing medium, although a small amount may be used to germinate the seed or root a cutting. Plant roots are suspended mid-air inside a chamber kept at a 100% humidity level and fed with a fine spray of nutrient solution. This mid-air feeding allows the roots to absorb much needed oxygen, thereby increasing metabolism and rate of growth reportedly up to 10 times of that in soil. And there is nearly no water loss due to evaporation.


Passive subirrigation

Passive subirrigation, also known as passive hydroponics or semi-hydroponics, is a method where plants are grown in an inert porous medium that transports water and fertilizer to the roots by capillary action from a separate reservoir as necessary, reducing labor and providing a constant supply of water to the roots. In the simplest method, the pot sits in a shallow solution of fertilizer and water or on a capillary mat saturated with nutrient solution. The various hydroponic media available, such as expanded clay and coconut husk, contain more air space than more traditional potting mixes, delivering increased oxygen to the roots, which is important in epiphytic plants such as orchids and bromeliads, whose roots are exposed to the air in nature. Additional advantages of passive hydroponics are the reduction of root rot and the additional ambient humidity provided through evaporation.


Ebb and flow / Flood and drain subirrigation

In its simplest form, there is a tray above a reservoir of nutrient solution. The tray is either filled with growing medium (clay granules being the most common) and planted directly, or pots of medium stand in the tray. At regular intervals, a simple timer causes a pump to fill the upper tray with nutrient solution, after which the solution drains back down into the reservoir. This keeps the medium regularly flushed with nutrients and air. Once the upper tray fills past the drain stop it begins recirculating the water until the pump is turned off and the water in the upper tray drains back into the reservoir.


Raft System

The hydroponic lettuce raft system is easy to assemble from inexpensive, household parts. The Hydroponic raft system operates by floating plants above an Oxygen infused bath of nutrients into which the roots grow. The hydroponic raft system is suitable for short-stature plants such as lettuces, kitchen herbs and other small varieties. ((Wikipedia).


3 comments:

haryoshi said...

nice post....!!!!

visit me ok...
fmipa unand

Unknown said...

This is really fascinating, You are an overly skilled blogger.
I have joined your rss feed and look ahead to seeking extra of your fantastic post.
Also, I've shared your site in my social networks
Kumpulan Lagu Mp3 Terbaru

ZachSaMe said...

i always have no idea what to do with my mason jar ... now i'm gonna grow some nice herbs with it! thank you for this amazing hydroponics method!